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Abstract. In this paper, we discuss the effect of a strong perpendicular magnetic field component
upon a range of coupled double quantum well (CDQW) devices. With increasing inter-layer
tunnelling, we observe a transition from double- to single-layer characteristics in the magneto-
transport data. The effect of the perpendicular field upon a CDQW has also been considered through
a self-consistent Poisson/single-particle Schrödinger model. The implications of the experimental
and theoretical results for the current analysis of the transport properties of CDQWs are discussed.

1. Introduction

In order to describe the transport properties of a CDQW it is necessary to detail their general
characteristics in a perpendicular field. Therefore, the introduction is subdivided into three
sections. Firstly, the effect of a perpendicular magnetic field upon the transport characteristics
of DQWs is briefly introduced. Secondly, a short description of the absence of odd QH states
in CDQWs at resonance due to many-body effects is given. Thirdly, we have a note upon the
importance of analysing CDQWs together with a self-consistent model.

1.1. Formation of LLs in DQWs

Consider initially an uncoupled DQW in a perpendicular magnetic field. In the absence of
inter-layer tunnelling(1SAS → 0) the 2DEGs are fully localized within their respective QWs.
As a result, Landau levels in each 2DEG (QW) are populated independently of one another.
Upon sweeping a perpendicular magnetic field, the longitudinal resistance of each of the layers
oscillates due to Shubnikov–de Haas (SdH) oscillations arising from the depopulation of LLs
in each layer. As the two layers are independent, a fast Fourier transform of these oscillations
away from resonance reveals two frequencies, reflecting two, different 2DEG densities,Ntop
andNbottom. At resonance the two 2DEGs have equal densities and one resolves a FFT
frequency in the SdH oscillations corresponding to half of the total carrier density: only even
filling indices(νtotal = 2, 4, 6, . . .) are observed in the SdH data, whereνtotal = Ntotalh/eB⊥
andNtotal = Ntop +Nbottom. Experimental magneto-transport characteristics of an uncoupled
DQW are illustrated in section 2.1.

As the two QWs are brought into close proximity, the first ground state associated with
each of the QWs hybridizes, the degree of hybridization being determined by the overlap
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of the two wavefunctions. By matching the densities in each QW the inter-layer tunnelling
is maximized (resonance) and a symmetric and anti-symmetric subband are formed with an
energy separation1SAS . Upon applying a perpendicular magnetic field one must now consider,
in addition to the Zeeman(g∗µBB) and cyclotron(h̄ωc) energies, the gap arising from the
inter-layer tunnelling.

For all CDQW densities, both on and off resonance, the resistance minima in the SdH
oscillations should correspond to the occupation of LLs in either of the two subbands. In
this respect the CDQW should be similar to two uncoupled 2DEGs. A significant difference
between the CDQW and the uncoupled 2DEGs should arise as both systems are brought onto
resonance. In the CDQW, the degeneracy of the subbands has been lifted by wavefunction
hybridization; therefore the two subbands have different carrier densities. One should see the
manifestation of the two, differing, densities as a convolution of two FFT frequencies in the
SdH data, in contrast to the single FFT frequency in the uncoupled case.

However, it is observed experimentally that upon applying ahigh magnetic field to the
CDQW, at resonance, one doesnot see the two FFT frequences. Rather, the system forms
strong even and odd filling indices(νtotal) associated with thetotal carrier density. As will
be discussed further in later sections, this is a result of the charge associated with the two
subbands occupying the same physical space because their wavefunctions are delocalized
across the DQW. As such, it is incorrect to regard the two subbands as being independent of
one another and the CDQW behaves as if it were a single 2DEG [1, 2, 12]. The magnetic
field thus causes a transition from bilayer characteristics at low magnetic fields to single layer
behaviour at high fields.

1.2. Absence of odd QH states

A number of experimental studies [3–8] utilizing samples with differing degrees of tunnelling
and carrier densities have shown that the oddνtotal IQH states seen in CDQWs may be destroyed
at a critical perpendicular field and tunnelling energy.

MacDonaldet al [9] have proposed that the origin of these missing states lies in a
competition between the inter-layer coupling and the intra-layer e–e Coulomb energy, the
result of which is a ‘bi-layer phase transition’.

The mechanism [4, 9] proposed for the destruction of the odd IQH states, using theν = 1
state as an example, is outlined as follows. In order for this theory to be applicable to a CDQW
at resonance, the spin split LLs must be fully resolved and the tunnelling coupling energy be
the smallest energy scale(h̄wc � g∗µBB > 1SAS): figure 1 illustrates the energies of the
first two LLs in each subband as a function of magnetic field.

All of the odd IQH states(ν = 1, 3, 5, . . .) seen in this limit are a product of the tunnelling
gap1SAS [4] and upon applying a large perpendicular field, the anti-symmetric subband can
be depopulated. One then sees aν = 1 state in which all of the charge occupies the symmetric
subband [4, 9]. The absence of this QH state would then suggest that a new ground state has
been formed in which the single particle tunnelling gap(1SAS) has been suppressed. Likewise,
the suppression of other odd QH states would also imply the loss of the1SAS gap.

In the theory [9]†, two configurations of the electron distribution are considered: either
the formation of the symmetric and anti-symmetric subbands with a delocalized charge
distribution, or the localization of charge in both the QWs due to many-body effects.

Whereas the first configuration generates odd QH states, the second leads to the
suppression of odd QH states. Theoretical calculations have shown that the strength of the

† What follows is a approximate description; interested readers are referred to the original papers for a more detailed
description.
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Figure 1. First two spin split LLs from each subband in a CDQW.

intra-layer Coulomb interactions determines whether it is favourable to form the delocalized
charge distribution or to localize the charge in the QWs. The latter state becomes more
favourable in 2DEGs with a large Coulomb interaction energy.

As an applied magnetic field acts to localize the electrons, the e–e interactions become
increasingly important. Therefore a CDQW at resonance should be driven through a
transition from a symmetric charge distribution (stabilized through inter-layer tunnelling) to
two correlated layers with no charge excitation gap as the field is increased: this transition
destroys the tunnelling gap and suppresses the oddν = 1 QH state. The suppression of
this and other odd IQH states has been studied in both single, wide QWs (SWQWs) [5] and
CDQW hetero-structures [4], the observations seeming to agree with the ‘coupled’ to ‘bi-layer’
(suppressed tunnelling) transition.

An additional phase transition has then been proposed for theν = 1 QH states. In this
transition a continuous evolution of the QH state to the formation of a many-body correlated
ψ111 state is predicted [7]. The following work discusses the first of these transitions; the
transition to aψ111 state is not considered within the range of experimental parameters dealt
with.

1.3. Self-consistent models

There are, however, some noticeable features in a CDQW’s magneto-transport data that require
an explanation. In particular, both theν = 1 [1, 10, 11] andν = 2 [1] QH states have been
observed to remain whilst the subband densities are mismatched from resonance.

Studies utilizing single [13], single wide [14], parabolic [15] and double [2, 12] QWs
have shown that both the magneto-transport and optical characteristics can deviate from the
anticipated behaviour as charge is redistributed between subbands. Clearly an appropriate
consideration of the wavefunction de-localization must be formulated for CDQWs in which
the stability (off resonance) and even the absence (on resonance) of QH states could be an
artifact of the density of states’ (DoS’s) quantization in a coupled 2DEG system.

Secondly, and of possible import to the proposed phase transition, is the destruction of
the ν = 1 state due to LL broadening. It has been proposed by many authors [16–18] that
the width of the LLs increases with increasing magnetic field. Since the symmetric and anti-
symmetric LLs are separated by a field independent gap(1SAS), see figure 1, it is conceivable
that with an increasing field the tunnelling gap is smeared out, thereby suppressing the odd
QH states.
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The following work examines a range of coupled devices both on and off resonance.
The presence of anomalous QH features atν = Ntotalh/eB⊥ is shown to be a product of the
tunnelling energy1SAS and readily modelled in a fully self-consistent Poisson/Schrödinger
solver: a model that does not include inter-layer interactions. Furthermore, an alternative
mechanism, arising from the field dependent LL width, is proposed that could account for the
absence of odd WH states in a CDQW.

2. Experimental data

Measurements were performed on GaAs/AlGaAs double quantum well (DQW)
heterostructures grown by molecular beam epitaxy (MBE) upon (100) GaAs substrates.
Electrons are confined to two GaAs quantum wells (QWs) of 150 Å width separated by a
barrier layer of either Al0.33Ga0.67As or AlAs. Carriers are supplied by modulation-doped
AlGaAs layers situated above and below the two wells. Optical lithography and wet etching
were used to define a Hall bar mesa and AuGeNi contacts were made that penetrated both
2DEGs. A surface Schottky front-gate enabled the density of the 2DEGs to be controlled.
The growth characteristics for the three samples used are shown in table 1, together with their
calculated coupling energies1SAS . Device T239 had an AlAs barrier, thus the barrier height is
1050 meV compared with 270 meV in T224/T225. As a result, the coupling energy is reduced
whilst maintaining the same separation between 2DEGs.

Table 1. Growth parameters of the samples used including their mobilities and densities without
illumination and atVfg = 0 V. All QWs are 150 Å wide.

Barrier Ntop Nbottom µtop µbottom

Sample (Å) (1015m−2) (1015m−2) (m2 V−1 s−1) (m2 V−1 s−1) 1SAS

T225 300 1.3 1.3 105 116 0.36µeV
T224 25 1.14 1.08 66 79 1.3 meV
T239 25 1.33 1.33 105 116 0.51 meV

Experimentally, we measured both the longitudinal resistance(Rxx)and the Hall resistance
(RH ) of the devices as a function of the front-gate bias(Vfg) for different applied fields. Where
independent control of both the in-plane and perpendicular field components are necessary the
sample has been mounted on anin situ rotating probe. Controlled field application coupled
with computational control of the sample angle to the applied field (within<0.1◦) allows
gate-sweeps at any combination of in-plane/perpendicular field (within the magnet’s range)
[28].

2.1. Uncoupled 2DEGs

The formation and occupation of LLs with magnetic field remains similar to the single 2DEG
when considering two un-coupled 2DEGs. However, the picture is complicated somewhat
by the presence of a second layer. As expected, the layers are populated sequentially by the
front-gate bias, starting with the 2DEG farthest from the gate. Once the gate begins to populate
the top layer the lower 2DEG’s carrier density(Nbottom) remains approximately constant. As
the top 2DEG’s screening is not perfect, the finite compressibility of the upper 2DEG(κT )

determines the small density changes in the lower. Since the magnitude and sign ofκT varied
withNtop thenNbottom also changes with gate bias. Therefore, the LL features associated with
the lower 2DEG, especially at high fields, do not remain at fixed fields as the gate bias is altered.
This is more pronounced in the narrow barrier devices considered within later sections.
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Figure 2. At B⊥ = 0 T and fixed front-gate bias, the 2DEG carrier densities areNtop and
Nbottom for the top and bottom layers with Fermi energiesEf (N). Upon applying a field (a) LLs
are formed and the Fermi energy, shown by the dashed line, oscillates. (b) The corresponding
longitudinal resistance oscillations. (c) The longitudinal resistance converted into a grey-scale in
which light/dark regions indicate high/low resistances respectively.

Figure 2 shows the LL energies for both the top (solid lines) and bottom (dotted lines)
2DEGs at a fixed front-gate bias of +0.2 V in sample T225. As the magnetic field is swept
the Fermi energy oscillates, figure 2(a), not just through one set of LLs but through two. In
the absence of inter-well tunnelling, the 2DEGs remain localized within their respective QWs
and the formation of LLs in one 2DEG has no effect upon the second. Strictly, the interlayer
capacitance results in a degree of charge transfer between the two 2DEGs, however Daviset al
[2] demonstrated that this effect does not significantly modify the notion of two independent
LL ladders. Therefore, features are seen in the resistance, figures 2(b) and (c), that correspond
to the de-population of LLs in either 2DEG.

The characteristics of an un-coupled DQW are clearly seen in figure 3, in which the full
grey-scaled data set for sample T225 is shown. To create this grey scale, the four-terminal
longitudinal resistance has been measured as a function of gate bias at different magnetic
fields. The data within figure 3 may be divided into two section, (i)Vfg < −0.5 V and
(ii) Vfg > −0.5 V.

At large negative gate biases (Vfg < −0.5 V) the 2DEG closest to the gate (top) has been
fully depleted and one sees the field/bias LL fan of a single (bottom) 2DEG originating from
the pointB⊥ = 0 T,Vfg = −0.85 V.

For biasesVfg > −0.5 V, the top 2DEG is occupied, the top 2DEG’s LLs fanning outwards
from the origin atB⊥ = 0 T,Vfg = −0.5 V. Once both layers are occupied, one may identify
the de-population of LLs in both of the 2DEGs for all fields/biases. Filling factorsνB (νT )

associated with the bottom (top) 2DEGs are labelled by white (black) lettering on a black
(grey) background.

Where the two LL fans intersect, pronounced resistance minima are observed. Minima
that correspond to both layers occupying an integer number of filled LLs are assigned a filling
index(νtotal) corresponding to the total density,Ntotal = Ntop +Nbottom. These intersections
are marked by filled circles and labelled asνtotal(νB, νT ).
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Figure 3. Longitudinal resistance of two uncoupled 2DEGs (T225) as a function of gate bias and
perpendicular field. (a) The data are presented as a grey scale in which light/dark regions indicate
high/low resistances respectively. (b) The filling factors(ν) of the features seen in the grey-scaled
data. The highlighted area shows the region of single 2DEG occupancy.

As there is no inter-layer tunnelling, the two 2DEGs have equal densities at resonance
Vfg = 0.05 V. As the magnetic field is swept the Fermi energy jumps between doubly
degenerate LLs, consisting of two LLs of the same LL index each associated with a 2DEG.
Pronounced resistance minima are seen at even total filling factors(νtotal = 2, 4, 6, . . .),
corresponding toνT = νB = 1, 2, 3, . . . in each layer.

2.2. High degree of coupling: T224

The high degree of inter-layer tunnelling within sample T224 is reflected in the subband
density/bias relationship (figure 4). Fast Fourier transforms (FFTs) of field sweeps from
0 to 1.5 T have been used to determine the subband densities at different gate biases. To
resolve the SdH oscillations at low magnetic fields, the sample temperature was reduced to
320 mK.

A large subband anti-crossing is seen about resonance,Vfg = 0 V, indicating a high degree
of wave-function hybridization. The experimental data are compared with the result of the
self-consistent Schrödinger–Poisson model (dashed line) and excellent agreement seen.

Employing the same experimental technique as applied to samples T225 and T246,
the longitudinal resistance has been obtained as a function of gate bias and magnetic field.
Although the sample temperature has been reduced to 320 mK, the same characteristics are
seen at 1.5 K [1]. Filling factors(ν1) associated with the first coupled subband are labelled
by white lettering on a black background. Comparing the resistance grey-scale, figure 5,
obtained for T224 with that of the lower1SAS device (T225), figure 3, a number of significant
differences are observed.
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Figure 4. Sample T224’s subband densities determined from experimental data (•) and from the
self-consistent model with the LDA (dashed line).

Figure 5. Longitudinal resistance of sample T224 as a function of gate bias and perpendicular field.
(a) The data are presented as a grey scale in which light/dark regions indicate high/low resistances
respectively. (b) The filling factorsν of the features seen with a single 2DEG occupied and at
resonance. The sample temperature is 320 mK.

The strongest deviation is seen in the integer Hall states atνtotal = 1 and 2. These states
are continuous from large negative biases, where only a single subband is occupied, through the
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bias regime where two subbands should be occupied. For the higher odd and even index filling
fractions, there is a continuity of the pronounced resistance minima, nominally associated with
intersections of two LL fans, through the point of resonance(Vfg ≈ 0 V). This is observed for a
range of intermediate fields between approximately 3 and 0.7 T. At lower fields (on resonance),
and at slightly higher fields away from resonance, LLs may be identified with the occupation
of two subbands; as evidenced by the presence of two FFT periods in the SdH data (figure 4).

As first mentioned within the introduction, both odd and even QH states should be seen
at resonance as the subband densities remain significantly different. However, one should
seefainter resistance features associated with the carrier density in each subband not strong
resistance minima at filling factors corresponding toνtotal [1].

As discussed in detail by Daviset al [2], this observation can be assigned to the ‘locking’
of subbands at the chemical potential as the magnetic field is increased, a mechanism which
is briefly outlined in the following.

In order that the total carrier density remain constant as the field is increased, the conduction
band edge is either raised or lowered in energy as the chemical potential becomes ‘pinned’
at the 2DEG’s LLs. In the absence of tunnelling the two 2DEGs/QWs are isolated from one
another and, as the magnetic field is increased, changes in each of the 2DEGs’ DoS/band
profiles remain independent. However, in a CDQW, the wave-functions are delocalized and
occupy the same space. Upon applying the magnetic field to a CDQW the pinning of an
LL associated with one subband at the chemical potential will, therefore, affect the second
subband. The results of self-consistent calculations [2] indicate that it is thetotal density
within the CDQW that determines the filling factors seen. Therefore a ‘continuity’ of theνtotal
QH states should be observed from either side of resonance across the ‘matched’ point. In such
a case, the CDQW’s characteristics resemble that of asingle2DEG rather than two parallel
conducting, independent, subbands.

The experimentalν = 1 and 2 QH features that we observe are, at first glance, anomalous
with respect to this model in that they are seen not only at resonance, but over the full front-gate
bias range. From the calculations of Daviset al [2] the ‘locking’ phenomenon has been shown
to be dominant at resonance where the highest degree of wave-function hybridization occurs
and away from resonance the characteristics of two weakly un-coupled/coupled 2DEGs were
observed. However, with a sufficiently high degree of coupling the inter-layer tunnelling may
be sufficient to lock the subbands together over a wide bias/field range, and the full bias range.

Alternatively, the anomalous QH states could be a related to the close proximity of the two
electron gases and theν = 1 andν = 2 QH states may be stabilized by inter-layer correlations
once the two 2DEGs are taken from resonance [10, 11].

2.3. Reduced coupling: T239

To differentiate between an origin in either inter-layer correlations or coupling due to tunnelling,
a wafer with a 25 Å AlAs barrier has been studied. Using an AlAs barrier, the inter-layer
tunnelling is reduced whilst maintaining the same 2DEG–2DEG separation (d) as sample
T224, therefore the inter-layer Coulomb energy is also approximately the same.

If inter-layer correlations were the origin of the anomalousν = 1 and 2 QH states then the
same grey-scale characteristics would be seen in this sample as in the coupled sample T224;
decreasing the inter-layer tunnelling should haveno effect upon the sample characteristics.
Conversely, if the anomalous QH states are a result of the de-localized wave-functions,
decreasing the inter-layer tunnelling should significantly affect the magneto-transport data.
Rather than observing anomalous QH states, the characteristics of a lower1SAS sample, T225
for example, would be seen.
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Figure 6. The subband carrier densities for sample T239 as determined from SdH oscillations at
0.32 K.

As in the previous section the low field(0.3 T < B < 1.5 T) SdH data have been used to
determine the subband densities (figure 6). In contrast to the comparable data set for sample
T224 (figure 4), the subband anti-crossing is unresolved in the density–bias plot. Although
this is partially due to the poor resolution of the FFT technique near resonance, the data clearly
illustrate that the tunnelling is significantly less than in T224. From the self-consistent model
the coupling energy (table 1) is 2.5 times smaller than that of T224, and the subband density
difference at resonance is scaled equivalently:≈0.2× 1015 m−2 in T239.

The longitudinal resistance for sample T239 is shown as a function of bias and field in
figure 7. Filling factorsν1 (ν2) associated with the first (second) subbands are labelled by
white (black) lettering on a black (grey) background; intersections are marked by filled circles
and labelled asνtotal(ν1, ν2).

This device showsall of the characteristics of the uncoupled sample T225: (i) at resonance
Vfg = −0.1 V, only even filling indices(νtotal) are clearly seen; (ii) a LL fan can be identified
with each of the 2DEGs and theν = 2 QH state is no longer continuous across the full
grey scale. As the carrier densities in T239 are slightly higher than in T224, equivalent LL
intersections occur at higher magnetic fields. Although theν = 1 state within the bottom
QW, Vfg < −0.5 V, is still present for a range of biases past−0.5 V, the cause of which is
most probably the presence of some tunnelling in this sample, the strength of this resistance
minimum decreases rapidly and at higher fields than those shown this feature does not extend
across the entire bias range.

Despite the carrier density difference between T239 and T224, the data support a
conclusion that the anomalous QH characteristics seen in the strongly coupled sample T224
are due to inter-layer tunnelling and are not states stabilized by inter-layer correlations. The
observations upon the coupled 2DEG devices are summarized as follows. (i) At resonance,
the field/bias characteristics of the QH states in T224 correspond to thetotal density, not the
carrier densities of two ‘mismatched’ subbands. This indicates the onset of subband ‘locking’.
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Figure 7. Longitudinal resistance of two strongly coupled 2DEGs (T239) measured as a function
of gate bias for different perpendicular fields. (a) The data is presented as a grey scale in which
light/dark regions indicate high/low resistances respectively. (b) The filling factorsν of the features
seen in the grey-scaled data. The sample temperature was 0.32 K. The black, horizontal, feature
seen at≈1.5 T is due to missing data sweeps.

(ii) In the strongly coupled device, theν = 1 and 2 features are continuous forall gate biases
and fields. (iii) Off resonance, the strongly coupled device shows LL filling fractions(ν > 2)
characteristic of weaker coupled devices. (iv) At resonance, only even index filling fractions
are seen in the AlAs barrier sample T239 and no anomalous QH states are present.

The results from sample T239 indicate that inter-layer tunnelling, not inter-layer
correlations, are responsible for the anomalousν = 1 and 2 features. This conclusion can be
supported through the application of a strong in-plane field upon sample T224.

2.4. In-plane field dependence: T224

By applying an in-plane field component, the Fermi surfaces (FSs) associated with each 2DEG
are moved apart in momentum space. Small in-plane fields change the subband densities [20],
whilst an in-plane and perpendicular field component result in magnetic breakdown [21]. The
application of a very large in-plane field totally removes the Fermi surfaces from one another,
prohibiting inter-well tunnelling. In order to fully separate the FSs of two 2DEGs with carrier
densities of≈0.9×1015 m−2 separated by 175 Å, an in-plane field in excess of 6 T is required.

Figure 8 illustrates the effect of a 10 T in-plane field upon sample T224. This in-plane
field is sufficient to separate the FSs in sample T224 for the full gate bias range considered.
Filling factorsν1 (ν2) associated with the first (second) subbands are labelled by white (black)
lettering on a black (grey) background, intersections are marked by filled circles and labelled
asνtotal(ν1, ν2).

Only the even integer Hall states are seen at resonance,Vfg = 0 V. This is characteristic
of the samples with no inter-layer tunnelling, as illustrated in figure 3. Further, there are no
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Figure 8. The longitudinal resistance as a function of gate bias and perpendicular fields. (a) The
results are presented as a grey scale in which light/dark regions indicate high/low resistances
respectively. (b) The filling factorsν of the features seen in the grey-scaled data. The measurements
are made with aconstantin-plane field component of 10 T at 1.5 K.

signs of any anomalousν = 1 and 2 resistance minima (figure 5) either on or off resonance:
the transport characteristics now duplicate, albeit at lower fields, the results for an uncoupled
device (i.e. sample T225). Therefore, we conclude that the anomalous QH features seen at
ν = 1 and 2 are a result of inter-layer tunnelling, in agreement with the data from T239 where
the coupling was modified by increasing the inter-layer barrier.

3. Theoretical model

Although other authors have invoked inter-layer correlations to explain the stability of theν = 1
state off resonance [10, 11], the data presented demonstrate that the stability is not due to inter-
layer interactions: one must first consider the affect of the DoS’s quantization in a coupled
system. For CDQWs [2], the single–double layer transition is shown to be a result of wave-
function hybridization and can be modelled with a self-consistent Schrödinger–Poisson solver.
No inter-layer correlations are included within this model though intra-layer correlations are
accounted for through the LDA. The model assumes zero temperatures, with the LL broadening
accounting for scattering/thermal disorder.

The Landau levels are given a width through a field dependent Gaussian function and the
density of states of theith subbandD(E)i is given by [22, 23]

D(E)i = m∗

πh̄2

∑
L

∑
s

1

0(LL)i
√
B

exp

[
−2

(
(E − Ei)
0(LLi

√
B

)2]
. (1)

In equation (1),L = 0, 1, 2, . . . ands = − 1
2,+

1
2 are the Landau level and spin indices

respectively and0(LL)i is the Gaussian width atB = 1 T (taken to e 0.1 meV). A background
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of states has not been included, therefore the DoS becomes zero between sufficiently narrow
LLs. The carrier density in each subbandNi , is given by the integral in equation (2):

Ni =
∫ ∞
−∞

D(E)i dE. (2)

The resistance calculations presented are performed using either of two phenomenological
relations. The theoretical data shown in section 3.2 uses a standard phenomenological relation
given by equation (3). Here the states contributing to the conductance are modelled by a
Gaussian function with a width0i . The Landau level energiesEi,L(B) incorporate the spin
splitting and are given by(Ei,L(B) = Ei + (L + 1

2)h̄ωc + sg∗µBB)

σxx(i) = e2

h

∑
L

(L + 1
2) exp

[
−2

(
Ef − E(i,L)(B)

0i
√
B

)2]
. (3)

The transverse conductivity(σxy(i) = −eNi/B) and longitudinal conductivity are used
to calculate the resistivity through the tensor relation(ρ = σ−1) for parallel conducting layers.

It was found that, in order to obtain qualitative agreement with the grey-scaled experimental
data, a second phenomenological relation(σxx(i) = σitotal−σilocalized)was employed. In these
calculations, section 3.1,σitotal (equation 4) is the total contribution to the conductance from all
of the LLs lying below the Fermi energy andσilocalized (equation (5)) is a Gaussian distribution
of states, centred between the LLs, which do not contribute to the conductance. This relation
is aimed at reproducing the high field behaviour(ν < 2) and is based solely upon its ability
to duplicate the experimental results under the requirement that both even and odd IQH states
have resistance minima of similar widths at all fields:

σi total = e2

h

(
Ef − Ei
h̄ωc

)
(Ef > Ei) (4)

σi localized = e2

h

∑
L′

(
L′

2
+

1

2

)
exp

[
−2

(
Ef − E(i,L′)(B)

0i
√
B

)2]
. (5)

Herei is the subband identifier andL′ = 0, 1, 2, . . . is a Landau level counter,Ni is theith
subband density and0i the energy width of the non-contributing states. The energyE(i,L′)(B)

of points midway between conducting LLs is given byE(i,L′)(B) = (L′/2 + 1
2)h̄ωc.

In both cases the transverse conductivity(σxy(i) = −eNi/B) and longitudinal
conductivity are used to calculate the resistivity through the tensor relation(ρ = σ−1) for
parallel conducting layers.

3.1. Model: anomalousν = 1, 2 QH states

The model results for the coupled device, T224, are shown in figure 9. The calculations for
T224, although not in complete agreement with the experiment, do duplicate the major features
at high fields due to subband locking. As a number of approximations, including the Gaussian
form of the DoS, the form of the conductance calculation,g∗ factors and so forth, have been
made, complete agreement is not expected.

The important result arising from the model is that a strongνtotal = 1 state is observed
to be continuous across the entire field/bias range, although only a weakerνtotal = 2 state is
seen. That these continuous states are seen at all in a model with no inter-layer correlations
is conclusive evidence that they are a result of the wave-function hybridization in strongly
coupled 2DEGs.
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Figure 9. The longitudinal resistance calculated for sample T224 as a function of gate bias and
perpendicular field. (a) The results are presented as a grey scale in which light (dark) regions
indicate high (low) resistances respectively. (b) The filling factorsν of the features seen with a
single subband occupied and at resonance.

3.2. Model: Landau level broadening

It must be noted that in order to construct the proposed phase boundaries [9] the mixing of
LLs originating from different subbands has been neglected. Nominally, if the coupling gap
can be resolved at zero (low) magnetic fields, one would also expect to fully resolve the gap
at high magnetic fields. However, a 2DEG’s DoS in a field can be described by a series of
Gaussian functions which increase in width with field [22, 23]. At a sufficiently high field the
odd index LLs (e.g. theν = 1 LLs in each subband) separated by a field independent gap1SAS

begin to mix, thereby suppressing the tunnelling gap. To account for the LL width, we use the
theoretical self-consistent model to construct a comparable ‘phase’ diagram that describes the
stability of theνtotal = 1 state at resonance.

Devices with fixed QW widths of 150 Å and differing barrier widths have been modelled.
A front- and back-gate bias was used to vary the total density in the CDQW whilst maintaining
resonance. The magnetic field at which a QH state atνtotal = 1 should occur is calculated
from the subband densities. Theg-factor remains constant with a value of 3.1 and to account
for the LL broadening the LLs are defined by a width0LL

√
B (see equation (1)).

A typical set of resistance calculations is illustrated in figure 10 for a 30 Å barrier CDQW
with different total carrier densities. The data clearly show that theνtotal = 1 state is suppressed
as the total carrier density is increased. The higher oddνs remain pronounced (though slightly
diminished) once theν = 1 state has disappeared, indicating that higher magnetic fields would
be required to suppress these states.

The charge density distributions (figure 10) for three selectedν = 1 states illustrate the
aforementioned suppression of the tunnelling gap as the LL width increases. It is clearly seen
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Figure 10. The longitudinal resistance calculated using the self-consistent model for a single
device with a 30 Å barrier. The total density varies from 1.6 to 6.6×1015 m−2. Also shown are the
subband charge distributions calculated atν = 1 with three differentNtotal .

that as the field at which theν = 1 state occurs is increased, carriers then begin to populate
the anti-symmetricν = 1 LL.

It is also observed that theν = 2 state is present in both the lowest and highestNtotal
resistance traces and is strongly suppressed at intermediate densities. This may be readily
ascribed to the system crossing between the two limitsg∗µBB <> 1SAS . As the charge
excitation gap for theν = 2 state is given by|g∗µBB − 1SAS |, this state vanishes when the
Zeeman and tunnelling energies are comparable.

4. Discussion

To consider the experimental data in the light of the many-body interaction induced ‘bi-layer
phase transition’ in CDQWs, three energy scales are relevant: the inter-well, single particle,
tunnelling gap1SAS , the inter-layer energye2/(4πε0εrd) and the intra-layer Coulomb energy
U, e2/(4πε0εr lB). HerelB is the magnetic length andd the inter-layer separation.

Our experimental odd(νtotal) QH states are plotted on the phase diagram of (intra-/inter-
layer energies= d/lB) and (1SAS /intra-layer energy, figure 11. The filling factor corresponds
to the total DQW’s density, and the dashed lines indicate the proposed boundaries separating
a region in which odd QH states should be seen and the bi-layer regime in which no odd QH
states should be seen [9].

A similar phase diagram has been constructed using the theoretical model calculations.
The tunnelling gap1SAS is determined for each data point and the layer separationd is taken
to be the centre–centre distance between the QWs. To collate a large number of fields/samples,
the phase diagram shown in figure 12 is constructed by adding points corresponding to the
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Figure 11. Phase diagram for bi-layer transition with experimental data points for samples T224,
T224 (atB‖ = 10 T), T239 and T225. A complete, solid circle (•) indicates a strong observable
QH state whilst an empty circle (◦) no QH state.

presence (solid fill) or absence (white fill) of aνtotal = 1 QH state in the calculated longitudinal
resistance. Partially suppressed states are indicated by a partially filled point.

As the tunnelling energy does not change significantly with the CDQW’s total density, the
solid lines that link data points for any given sample follow a line of approximately constant
1SAS and changing magnetic field: moving to higherd/lB , the total density/magnetic field at
whichνtotal = 1 occurs increases. The data in figure 10 are one such data set, which maps out
the data points for the 30 Å barrier device.

Based upon the data within figures 10 and 12, there exists a critical boundary defined by
a coupling energy (1∗SAS ≈ 0.14

√
B meV) beyond which theνtotal = 1 state is no longer

stabilized by the inter-layer tunnelling. This critical limit corresponds to when1SAS becomes
comparable to the LL width of 0.1

√
B meV used within the simulation.

It should be noted that the model has been greatly simplified by assuming a Gaussian
LL DoS and there exists a great deal of uncertainty regarding their correct form. The
initial DoSs for a 2DEG in a strong magnetic field were proposed by Ando and Uemura
[24], their results predicting an ellipsoidal lineshape with a width(0) of (1.39

√
B/µ) meV.

However these calculations only considered short range scattering and inter-LL coupling was
neglected. It was also assumed that the zero-field mobility (scattering) remained unaffected by
the applied field. Calculations by Das Sarma and Xie [25] illustrated that the inclusion of long
range scattering and LL coupling effects modified the mobility in a field, increasing the LL
width above that calculated by Ando and Uemura. Further theoretical studies have employed
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Figure 12. Phase diagram for the theoretically determinedνtotal = 1 data points. A complete,
solid circle (•) indicates a strongly pronounced QH state whilst an empty circle (◦) no QH state.
Differing degrees of the QH minima strength are indicated by partially filled circles. The vertical
arrow indicates the QHE/no QHE boundary from the simulation.

Gaussian lineshapes [18, 26] or lineshapes related to the topology of the 2DEG’s confinement
[25].

Experimental estimates of the DoS’s form are also varied. Gaussian functions with a
√
B

dependent width have been reported with magneto-capacitance [23] and de Haas–van Alphen
data [22], albeit with a larger width than in Ando’s calculation. In contrast, Ashoori and Silsbee
[27] have reported a good fit whilst employing Lorentzian functions with a field independent
LL width.

The simplified conductance calculation includes further approximations such as a fixed
g-factor, Gaussian function and a

√
B dependence for the LL width (following the DoS

broadening). However, for this work a more rigorous approach is not necessary and the current
model has demonstrated that the magnitude of the LL broadening has a significant affect upon
whether or not an IQH state is seen atν = 1. This leads to the important conclusion that it
is incorrect to draw the phase diagrams neglecting the LL broadening as this clearly plays an
important role in the observation of theν = 1 state.

Comparing the results of the self-consistent model with the experimental data, there is a
degree of uncertainty in fitting the experiment to any transition boundary. There are errors
in estimating the experimental tunnelling energies and, whereas1SAS for T224 has been
determined experimentally, the gap for T239 remained unresolved and the simulation value
of 0.514 meV only provides an upper limit. Also, the layer separation is not strictly the
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centre–centre distance as the wavefunctions do have a finite width in the confinement direction.
Both of these increase the uncertainty in the experimental data’s position in the phase diagram.

If the LL broadening were the cause of the suppressed odd QH states, the model’s
assumption that the LL width at 1 T remains 100µ eV, irrespective of device, will be invalid.
A rigorous calculation accounting for a field/device dependentg-factor and alternative forms
for the DoS/conductance would be required to obtain full agreement with experiment.

5. Summary

The occurrence of IQH states in DQW systems has been investigated in a wide range of samples
with varying degrees of tunnelling and with a high in-plane magnetic field. Upon applying
a large perpendicular field the characteristics of a strongly coupled DQW resemble that of a
single 2DEG. Further, anomalously strong QH states are observed that persist as the CDQW
is taken off-resonance. The stability of the oddνtotal = 1 and 2 IQH states with density
imbalance from resonance is experimentally shown to be a result of the inter-layer tunnelling
and not a product of inter-layer correlations.

Furthermore, theoretical modelling employing a self-consistent Schrödinger–Poisson
solver duplicates the experimental observations. Calculations of the resistance and charge
distributions in coupled/de-coupled systems show that subband locking [2] may occur, at high
magnetic fields, irrespective of the density imbalance from resonance.

Using the self-consistent model, a phase diagram for theνtotal = 1 tunnelling stabilized
state (at resonance) has been constructed. The results show that theνtotal = 1 QH state is only
stabilized by inter-layer tunnelling for a specific range of1SAS and magnetic fields.

It is by no means implied that the collapse of odd IQH states through many-body
interactions does not occur. Rather, an alternative mechanism is proposed by which an
equivalent experimental phenomenon may result. Whilst the magnetic field is small and
1SAS is large the finite field dependent width of the LLs does not significantly affect the
CDQW and aνtotal = 1 state is seen. However at higher fields, or lower1SAS , once the LL
broadening and1SAS become comparable the tunnelling gap is destroyed and theνtotal = 1
state suppressed. This mechanism has, to date, not been considered in the literature despite
the important consequences that LL broadening has upon current studies of CDQWs.
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